Intelligent learning system for online learning
نویسندگان
چکیده
The paper presents an Adaptive Intelligent Learning System (AILS) designed to be used with any Learning Management System (LMS). The adaptiveness provides uniquely identifying and monitoring the learner’s learning process according to the learner’s profile. AILS has been implemented as a multi-agent system. The agents were developed as JADE agents. The paper presents the learning model, system components, agent behavior in learner scenarios, the ontologies used in agent communications, and the adaptive strategies. The sample application of the AILS to a dummy LMS is also given.
منابع مشابه
An Online Q-learning Based Multi-Agent LFC for a Multi-Area Multi-Source Power System Including Distributed Energy Resources
This paper presents an online two-stage Q-learning based multi-agent (MA) controller for load frequency control (LFC) in an interconnected multi-area multi-source power system integrated with distributed energy resources (DERs). The proposed control strategy consists of two stages. The first stage is employed a PID controller which its parameters are designed using sine cosine optimization (SCO...
متن کاملA New Fuzzy Stabilizer Based on Online Learning Algorithm for Damping of Low-Frequency Oscillations
A multi objective Honey Bee Mating Optimization (HBMO) designed by online learning mechanism is proposed in this paper to optimize the double Fuzzy-Lead-Lag (FLL) stabilizer parameters in order to improve low-frequency oscillations in a multi machine power system. The proposed double FLL stabilizer consists of a low pass filter and two fuzzy logic controllers whose parameters can be set by the ...
متن کاملDesigning stable neural identifier based on Lyapunov method
The stability of learning rate in neural network identifiers and controllers is one of the challenging issues which attracts great interest from researchers of neural networks. This paper suggests adaptive gradient descent algorithm with stable learning laws for modified dynamic neural network (MDNN) and studies the stability of this algorithm. Also, stable learning algorithm for parameters of ...
متن کاملA Higher Order Online Lyapunov-Based Emotional Learning for Rough-Neural Identifiers
o enhance the performances of rough-neural networks (R-NNs) in the system identification, on the base of emotional learning, a new stable learning algorithm is developed for them. This algorithm facilitates the error convergence by increasing the memory depth of R-NNs. To this end, an emotional signal as a linear combination of identification error and its differences is used to achie...
متن کاملUsing BELBIC based optimal controller for omni-directional threewheel robots model identified by LOLIMOT
In this paper, an intelligent controller is applied to control omni-directional robots motion. First, the dynamics of the three wheel robots, as a nonlinear plant with considerable uncertainties, is identified using an efficient algorithm of training, named LoLiMoT. Then, an intelligent controller based on brain emotional learning algorithm is applied to the identified model. This emotional l...
متن کاملCorrelation between Online Learner Readiness with Psychological Distress related to e-Learning among Nursing and Midwifery Students during COVID-19 pandemic
Introduction: With the sudden shift of face-to-face education to e-learning during the COVID-19 pandemic, awareness of learnerschr('39') readiness for online learning and its impact on studentschr('39') psychological distress related to e-learning is important for teachers, counselors, and educational planners. Therefore, the present study was conducted to investigate the correlation between on...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Hybrid Intell. Syst.
دوره 5 شماره
صفحات -
تاریخ انتشار 2008